首页> 外文会议>International Conference on Modelling, Identification Control >A structural damage detection and classification algorithm based on clone selection
【24h】

A structural damage detection and classification algorithm based on clone selection

机译:基于克隆选择的结构损伤检测与分类算法

获取原文

摘要

Inspired by identification ability of biological immune system, damage detection and classification problem in structural health monitoring is studied based on the autonomous, adaptive and evolutional artificial immune theory and method. A structural damage detection and classification algorithm based on clone selection principle is proposed. The algorithm samples data of structure model as antigen which stimulates the antibody sets. In order to improve the quality of memory cells, the antibodies go through learning and evolving process including cloning, mutation and selection. At last memory cell sets of high quality are used to detect and classify measured data. The experiment results of the proposed algorithm using benchmark structure model show that the algorithm can identify and classify the structural patterns exactly. The parameter settings which can achieve high classification success rate are proposed on the results analysis of experiment in this paper.
机译:基于生物免疫系统识别能力的启发,基于自主,自适应和进化的人工免疫理论和方法,研究了结构健康监测中的损伤检测和分类问题。提出了一种基于克隆选择原理的结构损伤检测与分类算法。该算法将结构模型的数据作为刺激抗体集的抗原进行采样。为了提高记忆细胞的质量,抗体经历了学习和发展过程,包括克隆,突变和选择。最后,高质量的存储单元组用于检测和分类测量数据。实验结果表明,该算法能够准确识别和分类结构模式。通过对实验结果的分析,提出了可以达到较高分类成功率的参数设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号