首页> 外文会议>International conference on mobile web and intelligent information systems >Finding Degree Constrained k-Cardinality Minimum Spanning Trees for Wireless Sensor Networks
【24h】

Finding Degree Constrained k-Cardinality Minimum Spanning Trees for Wireless Sensor Networks

机译:为无线传感器网络找到度约束的k基数最小生成树

获取原文

摘要

In this paper, we consider the degree constrained k-cardinality minimum spanning tree network problem (k-DCMST). This problem arises as a combination of two classical optimization problems, namely the degree constrained and k-minimum spanning tree problems (Resp. DCMST and k-MST). Let G(V,E) be a connected undirected graph formed with vertex and edge sets V and E, respectively. The DCMST problem asks for a minimum spanning tree where each maximum vertex degree is limited to a certain constant d lower than the cardinality of V minus one whilst the k-MST asks for a minimum spanning sub-tree formed with к nodes chosen from set V. Consequently, the k-DCMST asks for a sub-tree formed with k vertices where each vertex has degree lower than or equal to d. This problem is mainly motivated from the domain of wireless sensor networks where connected backbone sub-tree topologies will be mandatorily required for future technologies in order to connect any network under the internet of things paradigm. Vertex degree constraints arise naturally in order to avoid overloaded nodes in the network. We propose two compact formulations for this problem. More precisely, a Miller-Tucker-Zemlin constrained version and a single flow based formulation that we further strengthen by using the Handshaking lemma and with valid inequalities adapted from the DCMST and dominating tree problems. Numerical results are given for complete and disk graph instances for different degree values. Our preliminary numerical results indicate that the flow based model allows one to obtain optimal solutions in less CPU time for most of the instances.
机译:在本文中,我们考虑了度约束的k基数最小生成树网络问题(k-DCMST)。该问题是由两个经典的优化问题(即度数约束和k最小生成树问题(分别为DCMST和k-MST))组合而成的。令G(V,E)是分别由顶点和边集V和E形成的连通无向图。 DCMST问题要求一个最小生成树,其中每个最大顶点度都被限制为比V的基数小一个常数d,而k-MST要求一个最小的生成树,该子树由从集合V中选择的к个节点组成因此,k-DCMST要求一个由k个顶点组成的子树,其中每个顶点的度数小于或等于d。该问题主要是由无线传感器网络领域引起的,在该领域中,未来的技术将强制要求连接的主干子树拓扑,以便在物联网范式下连接任何网络。为了避免网络中的节点过载,自然会产生顶点度约束。针对此问题,我们提出了两个紧凑的公式。更精确地讲,我们通过使用握手引理以及具有适用于DCMST的有效不等式和支配树问题的Miller-Tucker-Zemlin约束版本和基于单流的公式来进一步加强该公式。给出了针对不同度值的完整图和磁盘图实例的数值结果。我们的初步数值结果表明,对于大多数实例,基于流的模型允许人们以更少的CPU时间获得最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号