【24h】

Graph Hyperalignment for Multi-subject fMRI Functional Alignment

机译:用于多主体功能磁共振成像功能对齐的图形超对齐

获取原文

摘要

In fMRI analysis, the scientist seeks to aggregate multi-subject fMRI data so that inferences shared across subjects can be achieved. The challenge is to eliminate the variability of anatomical structure and functional topography of the human brain, which calls for aligning fMRI data across subjects. However, the existing methods do not exploit the geometry of the stimuli, which can be inferred by using certain domain knowledge and then serve as a priori. In this paper, such geometry is encoded in a graph matrix, and we propose an algorithm named Graph Hyperalignment for leveraging it. Specifically, a kernel-based optimization is developed to allow for non-linear feature extraction. To tackle overfitting caused by the high-spatial-and-low-temporal resolution of fMRI, the data in the new feature space are assumed to lie in a low-dimensional affine subspace, which can be implicitly integrated into the proposed optimization. Unlike other iterative existing methods, GHA reaches an optimal solution directly. Examining over four real datasets, Graph Hyperaligment achieves superior results to other methods.
机译:在功能磁共振成像分析中,科学家试图汇总多主题功能磁共振成像数据,以便可以实现受试者之间共享的推理。面临的挑战是消除人脑的解剖结构和功能性地形的变异性,这要求在受试者之间对齐fMRI数据。然而,现有的方法没有利用刺激的几何形状,可以通过使用某些领域知识来推断该几何形状,然后将其用作先验。在本文中,这种几何形状被编码在图矩阵中,并且我们提出了一种称为图超对齐的算法来利用它。具体而言,开发了基于内核的优化以允许进行非线性特征提取。为了解决由fMRI的高空间和低时间分辨率引起的过度拟合,假定新特征空间中的数据位于低维仿射子空间中,可以将其隐式集成到建议的优化中。与其他现有迭代方法不同,GHA可直接达到最佳解决方案。通过检查四个真实数据集,Graph Hyperaligment获得了优于其他方法的优异结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号