首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >Pulmonary Vessel Segmentation Based on Orthogonal Fused U-Net++ of Chest CT Images
【24h】

Pulmonary Vessel Segmentation Based on Orthogonal Fused U-Net++ of Chest CT Images

机译:基于胸部CT融合U-Net ++的肺血管分割

获取原文

摘要

Pulmonary vessel segmentation is important for clinical diagnosis of pulmonary diseases, while is also challenging due to the complicated structure. In this work, we present an effective framework and refinement process of pulmonary vessel segmentation from chest computed tomographic (CT) images. The key to our approach is a 2.5D segmentation network applied from three orthogonal axes, which presents a robust and fully automated pulmonary vessel segmentation result with lower network complexity and memory usage compared to 3D networks. The slice radius is introduced to convolve the adjacent information of the center slice and the multi-planar fusion optimizes the presentation of intra and inter slice features. Besides, the tree-like structure of pulmonary vessel is extracted in the post-processing process, which is used for segmentation refining and pruning. In the evaluation experiments, three fusion methods are tested and the most promising one is compared with the state-of-the-art 2D and 3D structures on 300 cases of lung images randomly selected from LIDC dataset. Our method outperforms other network structures by a large margin and achieves by far the highest average DICE score of 0.9272 and a precision of 0.9310, as per our knowledge from the pulmonary vessel segmentation models available in literature.
机译:肺血管分割对于肺部疾病的临床诊断很重要,但由于结构复杂,也具有挑战性。在这项工作中,我们提出了从胸部计算机断层扫描(CT)图像进行肺血管分割的有效框架和完善过程。我们的方法的关键是从三个正交轴应用的2.5D分割网络,与3D网络相比,它呈现了强大而全自动的肺血管分割结果,具有较低的网络复杂度和内存使用率。引入切片半径以对中心切片的相邻信息进行卷积,并且多平面融合优化了切片内和切片间特征的表示。此外,肺血管的树状结构在后处理过程中被提取出来,用于细分和修剪。在评估实验中,测试了三种融合方法,并将最有前途的一种方法与从LIDC数据集中随机选择的300例肺部图像的最新2D和3D结构进行了比较。根据我们从文献中可获得的肺血管分割模型的知识,我们的方法在很大程度上优于其他网络结构,并且迄今为止获得了最高的平均DICE分数0.9272和0.9310的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号