首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
【24h】

Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations

机译:变换下基于学习一致性的半监督医学图像分割

获取原文

摘要

The scarcity of labeled data often limits the application of supervised deep learning techniques for medical image segmentation. This has motivated the development of semi-supervised techniques that learn from a mixture of labeled and unlabeled images. In this paper, we propose a novel semi-supervised method that, in addition to supervised learning on labeled training images, learns to predict segmentations consistent under a given class of transformations on both labeled and unlabeled images. More specifically, in this work we explore learning equivariance to elastic deformations. We implement this through: (1) a Siamese architecture with two identical branches, each of which receives a differently transformed image, and (2) a composite loss function with a supervised segmentation loss term and an unsupervised term that encourages segmentation consistency between the predictions of the two branches. We evaluate the method on a public dataset of chest radiographs with segmentations of anatomical structures using 5-fold cross-validation. The proposed method reaches significantly higher segmentation accuracy compared to supervised learning. This is due to learning transformation consistency on both labeled and unlabeled images, with the latter contributing the most. We achieve the performance comparable to state-of-the-art chest X-ray segmentation methods while using substantially fewer labeled images.
机译:标记数据的稀缺性经常限制了有监督的深度学习技术在医学图像分割中的应用。这激励了半监督技术的发展,该技术可从标记图像和未标记图像的混合物中学习。在本文中,我们提出了一种新颖的半监督方法,除了在标记训练图像上进行监督学习之外,还可以学习预测在给定类别的变换下在标记和未标记图像上一致的分割。更具体地说,在这项工作中,我们探索了弹性变形的学习等方差。我们通过以下方式实现此目的:(1)具有两个相同分支的暹罗体系结构,每个分支都接收不同的变换图像,(2)具有监督分割损失项和无监督项的复合损失函数,该复合项鼓励预测之间的分割一致性两个分支中的一个。我们使用5倍交叉验证对胸部X射线照片的公共数据集进行了评估,该数据具有解剖结构的分割。与监督学习相比,该方法可达到更高的分割精度。这是由于在标记和未标记的图像上学习转换一致性,其中后者贡献最大。我们使用了更少的标记图像,可以达到与最新的胸部X射线分割方法相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号