首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >Misshapen Pelvis Landmark Detection by Spatial Local Correlation Mining for Diagnosing Developmental Dysplasia of the Hip
【24h】

Misshapen Pelvis Landmark Detection by Spatial Local Correlation Mining for Diagnosing Developmental Dysplasia of the Hip

机译:通过空间局部相关性挖掘来检测髋关节发育不良的骨盆畸形,以诊断髋关节发育不良

获取原文

摘要

Developmental dysplasia of the hip (DDH) refers to an abnormal development of the hip joint in infants. Accurately detecting and identifying the pelvis landmarks is a crucial step in the diagnosis of DDH. Due to the temporal diversity and pathological deformity, it is a difficult task to detect the misshapen landmark and diagnose the DDH illness condition for both human expert and computer. Moreover, there is no adequate and public dataset of DDH for research. In this paper, we investigate the spatial local correlation with convolutional neural network (CNN) for misshapen landmark detection. First, we convert the detection of a landmark to the detection of the landmark's local neighborhood patch, which yields effective spatial local correlation for the identification of a landmark. Then, a deep learning based method named FR-DDH network, is proposed for misshapen pelvis landmark detection. It mines the spatial local correlation and detects the best-matched region according to the spatial local correlation. To the end, the landmarks are located at the center of the regions. Besides, a dataset with 9813 pelvis X-ray images is constructed for research in this area, and it will be released for public research. To the best of our knowledge, this is the first attempt to apply deep learning in the diagnosis of DDH. Experimental results show that our approach achieves an excellent precision in landmark location (MAE 1.24 mm) and illness diagnosis over human experts.
机译:髋关节发育不良(DDH)是指婴儿髋关节的异常发育。准确检测和识别骨盆界标是诊断DDH的关键步骤。由于时间上的多样性和病理畸形,对于人类专家和计算机而言,检测畸形的界标并诊断DDH疾病状况是一项艰巨的任务。而且,没有足够的DDH公开数据集用于研究。在本文中,我们研究了使用卷积神经网络(CNN)进行空间局部相关性以检测变形的地标。首先,我们将地标的检测转换为地标的局部邻域补丁的检测,这会产生有效的空间局部相关性以识别地标。然后,提出了一种基于深度学习的方法FR-DDH,用于畸形骨盆界标检测。它挖掘空间局部相关性,并根据空间局部相关性检测最匹配的区域。最后,地标位于区域的中心。此外,还建立了带有9813骨盆X射线图像的数据集,用于该领域的研究,并将发布以供公众研究。据我们所知,这是将深度学习应用于DDH诊断的首次尝试。实验结果表明,与人类专家相比,我们的方法在地标定位(MAE 1.24 mm)和疾病诊断方面具有出色的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号