首页> 外文会议>International Conference on Intelligent Transportation Systems >Environment Perception Framework Fusing Multi-Object Tracking, Dynamic Occupancy Grid Maps and Digital Maps
【24h】

Environment Perception Framework Fusing Multi-Object Tracking, Dynamic Occupancy Grid Maps and Digital Maps

机译:环境感知框架,融合了多对象跟踪,动态占用网格地图和数字地图

获取原文

摘要

Autonomously driving vehicles require a complete and robust perception of the local environment. A main challenge is to perceive any other road users, where multi-object tracking or occupancy grid maps are commonly used. The presented approach combines both methods to compensate false positives and receive a complementary environment perception. Therefore, an environment perception framework is introduced that defines a common representation, extracts objects from a dynamic occupancy grid map and fuses them with tracks of a Labeled Multi-Bernoulli filter. Finally, a confidence value is developed, that validates object estimates using different constraints regarding physical possibilities, method specific characteristics and contextual information from a digital map. Experimental results with real world data highlight the robustness and significance of the presented fusing approach, utilizing the confidence value in rural and urban scenarios.
机译:自动驾驶车辆需要对当地环境有完整而有力的了解。一个主要的挑战是要感知其他道路使用者,其中通常使用多对象跟踪或占用栅格图。提出的方法结合了两种方法来补偿误报并获得互补的环境感知。因此,引入了一种环境感知框架,该框架定义了一个通用表示形式,从动态占用网格图中提取对象,并将它们与Labeled Multi-Bernoulli过滤器的轨迹融合。最后,开发了一个置信度值,该置信度值使用有关物理可能性,方法特定特征和来自数字地图的上下文信息的不同约束条件来验证对象估计。利用真实世界数据的实验结果突出了所提出的融合方法的鲁棒性和重要性,它利用了城乡场景中的置信度值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号