首页> 外文会议>International Conference on Intelligent Transportation Systems >A Dempster-Shafer Sensor Fusion Approach for Traffic Incident Detection and Localization
【24h】

A Dempster-Shafer Sensor Fusion Approach for Traffic Incident Detection and Localization

机译:用于交通事件检测和定位的Dempster-Shafer传感器融合方法

获取原文

摘要

Traffic incident detection and localization is an important application in traffic management systems. The ability to detect and localize traffic incidents enables a timely response to accidents and facilitates effective and efficient traffic flow management. This paper presents a sensor-network based approach for tackling the problem of incident localization. Traffic count sensors, which tend to be an element of the road infrastructure, are used as the source of traffic sensory data. Such sensors come in a variety of types and capabilities, providing the potential for complementary and redundant information gathering. Thus, it is conceivable to fuse such sensory information to achieve insightful and accurate incident detection and localization. In this context, the Dempster-Shafer (DS) theory of evidence is used as the foundation for fusing traffic sensory data. In this paper, a traffic model generator and two traffic-counting sensory systems are employed for acquiring traffic data pertinent to the distribution of cars on a given road segment. Experimental analysis on the performance of the proposed approach is provided.
机译:交通事故的检测和定位是交通管理系统中的重要应用。检测和定位交通事故的能力可以对事故做出及时响应,并促进有效和高效的交通流管理。本文提出了一种基于传感器网络的方法来解决事件定位问题。趋于成为道路基础设施的组成部分的交通计数传感器被用作交通传感数据的来源。这种传感器具有多种类型和功能,为补充和冗余的信息收集提供了潜力。因此,可以想到融合这些感官信息以实现有洞察力和准确的事件检测和定位。在这种情况下,Dempster-Shafer(DS)证据理论被用作融合交通传感数据的基础。在本文中,交通模型生成器和两个交通计数传感系统用于获取与给定路段上的汽车分配有关的交通数据。提供了对所提方法性能的实验分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号