首页> 外文会议>International Conference on Intelligent Transportation Systems >Efficient Dense-Dilation Network for Pavement Cracks Detection with Large Input Image Size
【24h】

Efficient Dense-Dilation Network for Pavement Cracks Detection with Large Input Image Size

机译:用于输入图像尺寸较大的路面裂缝检测的高效密集膨胀网络

获取原文

摘要

Window-sliding/region-proposal based methods have been the popular approaches for object detection with deep convolutional neural networks. However, these methods are very inefficient when the input image size is large, such as pavement images (2000×4000-pixel) used for cracking detection. In this paper, we propose a solution to this problem by introducing a fully convolutional dense-dilation network and the corresponding training strategy. The network is trained with small image blocks, then works on full-size images, which only needs to forward once for the process. In the first phase, it trains a classification network which classifies a small image block as crack, sealed crack or background. In the second phase, the fully convolutional layer is employed to convert the classification network into a detection network that is insensitive to the input size. At last, via introducing the equivalent dense-dilation design, it transfers both the low-level and middle-level knowledge from the classification network to facilitate the end-to-end network refining and improve the crack localization accuracy. The proposed approach is validated on 600 pavement images (2000×4000-pixel) obtained by industry equipment and it achieves state-of-the-art performance comparing with that of the recently published works in efficiency and accuracy.
机译:基于窗口滑动/区域提议的方法已成为使用深度卷积神经网络进行对象检测的流行方法。但是,这些方法在输入图像尺寸较大时(例如用于裂缝检测的路面图像(2000×4000像素))效率很低。在本文中,我们通过引入完全卷积的密集扩张网络和相应的训练策略,提出了解决该问题的方案。该网络使用小图像块进行训练,然后处理完整尺寸的图像,该图像只需要转发一次即可。在第一阶段,它训练分类网络,该网络将小图像块分类为裂缝,密封裂缝或背景。在第二阶段,采用全卷积层将分类网络转换为对输入大小不敏感的检测网络。最后,通过引入等效的密集扩张设计,它从分类网络中转移了低层和中层知识,从而促进了端到端网络的细化并提高了裂纹的定位精度。该方法在工业设备获得的600幅路面图像(2000×4000像素)上得到了验证,与最近发表的工作相比,在效率和准确性上都达到了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号