首页> 外文会议>International Conference on Intelligent Transportation Systems >Real-Time Detection and Mitigation of DDoS Attacks in Intelligent Transportation Systems
【24h】

Real-Time Detection and Mitigation of DDoS Attacks in Intelligent Transportation Systems

机译:智能交通系统中DDoS攻击的实时检测和缓解

获取原文

摘要

Vehicular network (VANET), a special type of ad-hoc network, provides communication infrastructure for vehicles and related parties, such as road side units (RSU). Secure communication concerns are becoming more prevalent with the increasing technology usage in transportation systems. One of the major objectives in VANET is maintaining the availability of the system. Distributed Denial of Service (DDoS) attack is one of the most popular attack types aiming at the availability of system. We consider the timely detection and mitigation of DDoS attacks to RSU in Intelligent Transportation Systems (ITS). A novel framework for detecting and mitigating low-rate DDoS attacks in ITS based on nonparametric statistical anomaly detection is proposed. Dealing with low-rate DDoS attacks is challenging since they can bypass traditional data filtering techniques while threatening the RSU availability due to their highly distributed nature. Extensive simulation results are presented for a real road scenario with the help of the SUMO traffic simulation software. The results show that our proposed method significantly outperforms two parametric methods for timely detection based on the Cumulative Sum (CUSUM) test, as well as the traditional data filtering approach in terms of average detection delay and false alarm rate.
机译:车载网络(VANET)是一种特殊的自组织网络,它为车辆和相关方(例如路边单元(RSU))提供通信基础结构。随着交通系统中技术的日益普及,安全通信问题变得越来越普遍。 VANET的主要目标之一是保持系统的可用性。分布式拒绝服务(DDoS)攻击是针对系统可用性的最受欢迎的攻击类型之一。我们考虑及时发现和缓解对智能运输系统(ITS)中RSU的DDoS攻击。提出了一种基于非参数统计异常检测的检测和缓解ITS中低速率DDoS攻击的新框架。处理低速DDoS攻击具有挑战性,因为它们具有高度分布式的特性,因此可以绕过传统的数据过滤技术,同时威胁RSU的可用性。借助SUMO交通模拟软件,可提供针对真实道路场景的大量模拟结果。结果表明,我们提出的方法在累积检测(CUSUM)测试的基础上,明显优于两种参数检测方法,在平均检测延迟和误报率方面,均优于传统的数据过滤方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号