首页> 外文会议>International Conference on Intelligent Autonomous Systems >Identification of Black Tea Fermentation Degree Based on Convolutional Neural Network
【24h】

Identification of Black Tea Fermentation Degree Based on Convolutional Neural Network

机译:基于卷积神经网络的红茶发酵度识别

获取原文

摘要

Fermentation is a key processing technology in black tea production, and the quality of black tea largely depends on it. In order to reduce the dependence on artificial in fermentation process, a method of identifying black tea fermentation degree based on convolutional neural network is proposed in this paper. In this paper, the convolutional neural network is leveraged to identify the fermentation degree of black tea. The L-SVM function is used to replace softmax activation function to identify fermentation degree of black tea in the softmax layer of convolutional neural network structure, and achieved accuracy rate of 89.0% for 2000 images of black tea fermentation. Through experimental comparison, the identification accuracy of using convolutional neural network is higher than that of using multilayer perceptron to identify the fermentation degree of black tea. The method proposed in this paper promoted the automation and intellectualization of fermentation and production of black tea.
机译:发酵是红茶生产中的关键加工技术,红茶的质量很大程度上取决于它。为了减少发酵过程中对人工发酵的依赖,提出了一种基于卷积神经网络的红茶发酵度识别方法。本文利用卷积神经网络来识别红茶的发酵程度。用L-SVM函数代替softmax激活函数来识别卷积神经网络结构的softmax层中红茶的发酵程度,对2000幅红茶发酵图像的准确率达到89.0%。通过实验比较,使用卷积神经网络的识别精度高于使用多层感知器识别红茶发酵度的识别精度。本文提出的方法促进了红茶发酵和生产的自动化和智能化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号