首页> 外文会议>International Conference on Innovations in Information , Embedded and Communication Systems >An individual grape leaf disease identification using leaf skeletons and KNN classification
【24h】

An individual grape leaf disease identification using leaf skeletons and KNN classification

机译:使用叶骨架和KNN分类进行葡萄叶病个体识别

获取原文

摘要

The most challenging process in agricultural applications is identification of leaf individually. In this paper, the classification of grape leaf diseases is proposed along with the leaf identification. Initially, the leaf skeletons are identified based on grape images. Since, the leaf skeletons are used for estimating the positions and directions of the leaves. The Tangential Direction (TD) based segmentation algorithm is proposed for retrieval of skeletons. If the grape leaf images are classified, then the histograms of H and a color channels are generated and the pixels values are observed to distinguish the healthy and diseased tissues. Then, extract the features and classify by using the KNN classification algorithm in order to find the leaf diseases.
机译:农业应用中最具挑战性的过程是单独识别叶子。在本文中,提出了葡萄叶病的分类以及叶的鉴定。最初,根据葡萄图像识别叶片骨骼。由于叶片骨架被用于估计叶片的位置和方向。提出了基于切向方向(TD)的分割算法,用于骨骼的检索。如果对葡萄叶图像进行分类,则将生成H和颜色通道的直方图,并观察像素值以区分健康组织和患病组织。然后,提取特征并使用KNN分类算法进行分类,以找到叶片疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号