首页> 外文会议>International Conference on Information Reuse and Integration for Data Science >Evaluation of a Reusable Technique for Refining Social Media Query Criteria for Crowd-Sourced Sentiment for Decision Making
【24h】

Evaluation of a Reusable Technique for Refining Social Media Query Criteria for Crowd-Sourced Sentiment for Decision Making

机译:评估可重复使用的技术,以完善用于决策的基于人群的情感的社交媒体查询条件

获取原文

摘要

There are three categories of users that consume social media data either for their personal use or for aggregation and presentation to others. These users rely on a preferential combination of Social Media Signals (SMS) that satisfies their information goals and aids in their decisionmaking. The research community is split on how to deal with some signals such as text originating from robotic voices; some suggest removing them while others are more interested in better identifying them. This paper statistically tests the SMS's in a dataset gathered during one of the political debates during the US Presidential Elections in 2016. It introduces a reusable technique aimed at contributing to the iterative and symbiotic user-system relationship, while improving the opportunity for arriving at empirically supported results for decision-making instances regardless of the consumer group.
机译:共有三种类别的用户消费社交媒体数据,这些社交媒体数据既可以用于个人用途,也可以用于汇总和呈现给他人。这些用户依赖于满足其信息目标并有助于决策的社交媒体信号(SMS)的优先组合。对于如何处理某些信号(例如来自机器人声音的文本),研究界存在分歧。一些建议删除它们,而另一些更感兴趣的是更好地识别它们。本文对在2016年美国总统大选期间一次政治辩论期间收集的数据集中的SMS进行了统计测试。它引入了一种可重用的技术,旨在促进迭代和共生的用户系统关系,同时增加了经验得出的机会决策决策实例支持的结果,与消费群体无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号