首页> 外文会议>International Conference on Information Reuse and Integration for Data Science >Context-Based Knowledge Discovery and Querying for Social Media Data
【24h】

Context-Based Knowledge Discovery and Querying for Social Media Data

机译:基于上下文的知识发现和社交媒体数据查询

获取原文

摘要

Modern Early Warning Systems (EWS) rely on scientific methods to analyse a variety of Earth Observation (EO) and ancillary data provided by multiple and heterogeneous data sources for the prediction and monitoring of hazard events. Furthermore, through social media, the general public can also contribute to the monitoring by reporting warning signs related to hazardous events. However, the warning signs reported by people require additional processing to verify the possibility of the occurrence of hazards. Such processing requires potential data sources to be discovered and accessed. However, the complexity and high variety of these data sources makes this particularly challenging. Moreover, sophisticated domain knowledge of natural hazards and risk management are also required to enable dynamic and timely decision making about serious hazards. In this paper we propose a data integration and analytics system which allows social media users to contribute to hazard monitoring and supports decision making for its prediction. We prototype the system using landslides as an example hazard. Essentially, the system consists of background knowledge about landslides as well as information about data sources to facilitate the process of data integration and analysis. The system also consists of an interactive agent that allows social media users to report their observations. Using the knowledge modelled within the system, the agent can raise an alert about a potential occurrence of landslides and perform new processes using the data sources suggested by the knowledge base to verify the event.
机译:现代预警系统(EWS)依靠科学的方法来分析各种地球观测(EO)和由多个异构数据源提供的辅助数据,以预测和监视灾害事件。此外,通过社交媒体,公众还可以通过报告与危险事件有关的警告标志来为监控做出贡献。但是,人们报告的警告标志需要进一步处理,以验证发生危险的可能性。这样的处理需要发现和访问潜在的数据源。但是,这些数据源的复杂性和多样性使得这一挑战尤其艰巨。此外,还需要具有自然灾害和风险管理方面的丰富专业知识,才能对重大灾害做出动态,及时的决策。在本文中,我们提出了一种数据集成和分析系统,该系统可让社交媒体用户为危害监控做出贡献,并支持其预测的决策。我们以滑坡为例来说明系统原型。本质上,该系统由有关滑坡的背景知识以及有关数据源的信息组成,以促进数据集成和分析过程。该系统还包括一个交互式代理,该代理允许社交媒体用户报告其观察结果。使用系统中建模的知识,代理可以发出有关潜在滑坡发生的警报,并使用知识库建议的数据源执行新过程以验证事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号