首页> 外文会议>International Conference on Imaging, Signal Processing and Communication >Performance of Lacunarity Features for Classifying Thyroid Nodule using Thyroid Ultrasound Images
【24h】

Performance of Lacunarity Features for Classifying Thyroid Nodule using Thyroid Ultrasound Images

机译:利用甲状腺超声图像对甲状腺结节进行分类的耳腔特征的性能

获取原文

摘要

Diagnosis of thyroid cancer can be analysis using nodule characteristic. The diagnosis analysis of thyroid nodule is depended on how long the radiologist gets their experience. To reduce radiologist dependency, a computerized system is necessary to build. This study focuses on classifying the thyroid nodule by using texture features into three classes. This research uses 97 thyroid ultrasound images. The first step of proposed method is pre-processing used to enhance the detection capability. After that, morphological operation and active contour are applied to find the correct nodules. The segmented area is extracted using histogram, GLCM, GLRLM, and lacunarity. The extracted value is used to classify the data using Multilayer Perceptron (MLP). The result shows the highest performance is felt in MLP method using lacunarty features. It is about 98.97% accuracy, 98.92% sensitivity, 99.47% specificity, 99.05% PPV, and 99.50% NPV. It means that lacunarity feature has good performance to classify three classes.
机译:甲状腺癌的诊断可以利用结节特征进行分析。甲状腺结节的诊断分析取决于放射科医生获得其经验的时间。为了减少放射科医生的依赖性,必须建立计算机化系统。这项研究的重点是通过使用纹理特征将甲状腺结节分为三类。这项研究使用了97个甲状腺超声图像。所提出方法的第一步是用于增强检测能力的预处理。之后,应用形态学运算和活动轮廓来找到正确的结节。使用直方图,GLCM,GLRLM和盲点提取分割的区域。提取的值用于使用多层感知器(MLP)进行数据分类。结果表明,使用腔室功能的MLP方法具有最高的性能。它的准确度约为98.97%,灵敏度为98.92%,特异性为99.47%,PPV为99.05%,NPV为99.50%。这意味着盲点功能具有很好的分类能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号