首页> 外文会议>International Conference on Imaging, Signal Processing and Communication >Nasolabial Folds Extraction based on Neural Network for the Quantitative Analysis of Facial Paralysis
【24h】

Nasolabial Folds Extraction based on Neural Network for the Quantitative Analysis of Facial Paralysis

机译:基于神经网络的鼻唇沟提取定量分析面瘫

获取原文

摘要

Nasolabial folds play an important role in diagnosing facial paralysis. The higher the asymmetry of nasolabial folds is, the more severe the facial paralysis will be. But the judgment of asymmetry of nasolabial folds depends on subjective clinical experience of medical experts, and lacks objective quantitative assessment. Moreover, it is difficult for traditional image processing methods to extract nasolabial folds for quantitative computation. In this paper, we propose a method that combines object detection network with semantic segmentation network to extract nasolabial folds. Firstly, Faster-Regions with Convolutional Neural Network is adopted to recognize the nasolabial region from whole face images. Secondly, Global Convolutional Network is adopted to segment nasolabial folds from the nasolabial region. Our method(91%) has outperformed traditional methods(64%). We computed the length, depth and direction of nasolabial folds to evaluate the asymmetry. With further calculation, a quantitative relationship between the asymmetry of nasolabial folds and the severity of facial paralysis is established to help doctors with better diagnosis and follow-up rehabilitation training.
机译:鼻唇沟在诊断面瘫中起重要作用。鼻唇沟不对称性越高,面部瘫痪就越严重。但是鼻唇沟不对称的判断取决于医学专家的主观临床经验,缺乏客观的定量评估。而且,传统的图像处理方法难以提取鼻唇沟皱纹以进行定量计算。在本文中,我们提出了一种将对象检测网络与语义分割网络相结合以提取鼻唇沟的方法。首先,采用带卷积神经网络的快速区域从全脸图像中识别鼻唇区域。其次,采用全球卷积网络对鼻唇沟区域的鼻唇沟进行分割。我们的方法(91%)优于传统方法(64%)。我们计算了鼻唇沟的长度,深度和方向,以评估不对称性。通过进一步的计算,鼻唇沟不对称与面部麻痹的严重程度之间的定量关系得以建立,以帮助医生更好地诊断和进行后续康复训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号