【24h】

A Page-Based Reject Option for Writer Identification in Medieval Books

机译:基于页面的拒绝选项,可用于识别中世纪书籍中的作者

获取原文

摘要

One main goal of paleographers is to identify the different writers who wrote a given manuscript. Recently, paleographers are starting to use digital tools which provide new and more objective ways to analyze ancient documents. On the other hand, in the last few years, deep learning techniques have been applied to many domains and to overcome its requirement of a large amount of labeled data, transfer learning has been used. This latter approach uses previously trained large deep networks as starting points to solve specific classification problems. In this paper, we present a novel approach based on deep transfer learning to implement a reject option for the recognition of the writers in medieval documents. The implemented option is page-based and considers the row labels provided by the trained deep network to estimate the class probabilities. The proposed approach has been tested on a set of digital images from a Bible of the Ⅻ century. The achieved results confirmed the effectiveness of the proposed approach.
机译:古画家的主要目标是确定撰写给定手稿的不同作家。最近,古画家开始使用数字工具,这些工具为分析古代文献提供了新的,更客观的方法。另一方面,在最近几年中,深度学习技术已应用于许多领域,并且为了克服其对大量标记数据的要求,已使用了转移学习。后一种方法使用先前训练的大型深度网络作为解决特定分类问题的起点。在本文中,我们提出了一种基于深度转移学习的新颖方法,以实现拒绝选项来识别中世纪文献中的作者。实现的选项基于页面,并考虑由受过训练的深度网络提供的行标签来估计类概率。所提出的方法已在来自Ⅻ世纪圣经的一组数字图像上进行了测试。取得的结果证实了该方法的有效性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号