首页> 外文会议>International Conference on High Performance Computing, Data, and Analytics >Acceleration of Sparse Vector Autoregressive Modeling Using GPUs
【24h】

Acceleration of Sparse Vector Autoregressive Modeling Using GPUs

机译:使用GPU加速稀疏向量自回归建模

获取原文

摘要

Autoregressive modeling is a standard approach to mathematically describe the behavior of a time series. The vector autoregressive model (VAR) describes the behavior of multiple time series. The VAR modeling is a fundamental approach which has applications in multiple domains such as time series forecasting, Granger causality, system identification and stochastic control. Solving high dimensional VAR model requires the use of sparse regression techniques from machine learning. Efficient algorithms to solve the sparse regression problems are too slow to be useful in solving large high dimensional sparse VAR modeling problems. Earlier application of sparse VAR modeling in the neuroimaging domain required the use of the IBMs Blue Gene supercomputers. In this paper we describe an approach to accelerate large scale sparse VAR problems when solved using the lasso regression algorithm on state-of-the-art GPUs. Our accelerated implementation on NVIDIA GTX 1080 GPU takes a few seconds to solve the problem, reaching up to 4 TFLOPs of single-precision performance which is close to 55% of its peak matrix-multiply (GEMM) performance.
机译:自回归建模是一种数学上描述时间序列行为的标准方法。向量自回归模型(VAR)描述了多个时间序列的行为。 VAR建模是一种基本方法,可在多个领域中应用,例如时间序列预测,Granger因果关系,系统识别和随机控制。解决高维VAR模型需要使用机器学习中的稀疏回归技术。解决稀疏回归问题的有效算法太慢,无法解决大型高维稀疏VAR建模问题。稀疏VAR建模在神经影像领域的早期应用要求使用IBM的Blue Gene超级计算机。在本文中,我们描述了一种在最新型GPU上使用套索回归算法求解时可解决大规模稀疏VAR问题的方法。我们在NVIDIA GTX 1080 GPU上加速实施需要花费几秒钟的时间来解决该问题,单精度性能高达4个TFLOP,接近其峰值矩阵乘法(GEMM)性能的55%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号