首页> 外文会议>International conference on high performance computing workshops >Distributed Training of Generative Adversarial Networks for Fast Detector Simulation
【24h】

Distributed Training of Generative Adversarial Networks for Fast Detector Simulation

机译:生成对抗网络的分布式训练,用于快速检测器仿真

获取原文

摘要

The simulation of the interaction of particles in High Energy Physics detectors is a computing intensive task. Since some level of approximation is acceptable, it is possible to implement fast simulation simplified models that have the advantage of being less computationally intensive. Here we present a fast simulation based on Generative Adversarial Networks (GANs). The model is constructed from a generative network describing the detector response and a discriminative network, trained in adversarial manner. The adversarial training process is compute-intensive and the application of a distributed approach becomes particularly important. We present scaling results of a data-parallel approach to distribute GANs training across multiple nodes on TACC's Stampede2. The efficiency achieved was above 94% when going from 1 to 128 Xeon Scalable Processor nodes. We report on the accuracy of the generated samples and on the scaling of time-to-solution. We demonstrate how HPC installations could be utilized to globally optimize this kind of models leading to quicker research cycles and experimentation, thanks to their large computation power and excellent connectivity.
机译:高能物理探测器中粒子相互作用的模拟是一项计算密集型任务。由于某种程度的逼近是可以接受的,因此可以实现简化的快速仿真模型,其优点是计算量少。在这里,我们提出基于生成对抗网络(GAN)的快速仿真。该模型由描述检测器响应的生成网络和以对抗性方式训练的判别网络构建。对抗训练过程需要大量计算,因此分布式方法的应用变得尤为重要。我们提出了一种数据并行方法的扩展结果,以在TACC的Stampede2上的多个节点之间分布GAN训练。从1个至128个Xeon可扩展处理器节点达到的效率达到94%以上。我们报告生成的样本的准确性以及解决时间的长短。我们展示了HPC安装如何利用其强大的计算能力和出色的连接性,如何在全球范围内优化此类模型,从而缩短研究周期和进行实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号