【24h】

Two-Way Parikh Automata with a Visibly Pushdown Stack

机译:具有双向下推堆栈的双向Parikh自动机

获取原文

摘要

In this paper, we investigate the complexity of the emptiness problem for Parikh automata equipped with a pushdown stack. Pushdown Parikh automata extend pushdown automata with counters which can only be incremented and an acceptance condition given as a semi-linear set, which we represent as an existential Presburger formula over the final values of the counters. We show that the non-emptiness problem both in the deterministic and non-deterministic cases is NP-c. If the input head can move in a two-way fashion, emptiness gets undecidable, even if the pushdown stack is visibly and the automaton deterministic. We define a restriction, called the single-use restriction, to recover decidability in the presence of two-wayness, when the stack is visibly. This syntactic restriction enforces that any transition which increments at least one dimension is triggered only a bounded number of times per input position. Our main contribution is to show that non-emptiness of two-way visibly Parikh automata which are single-use is NExpTime-C. We finally give applications to decision problems for expressive transducer models from nested words to words, including the equivalence problem.
机译:在本文中,我们研究了配备有下推式堆栈的Parikh自动机的空度问题的复杂性。下推式帕里克自动机使用只能递增的计数器扩展下推式自动机,并且接受条件为半线性集合,我们将其表示为存在于计数器最终值的Presburger公式。我们证明在确定性和非确定性情况下的非空性问题都是NP-c。如果输入头可以双向移动,那么即使下推堆栈明显且自动机是确定性的,空度也无法确定。我们定义了一个限制,称为一次性限制,以在有明显堆栈的情况下在双向情况下恢复可判定性。这种句法上的限制使每个至少增加一维的过渡仅在每个输入位置被触发有限次数。我们的主要贡献是表明,一次性使用的双向可见Parikh自动机的非空性是NExpTime-C。最后,我们将应用程序应用于从嵌套单词到单词的表达换能器模型的决策问题,包括等价问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号