首页> 外文期刊>Information and computation >Converting nondeterministic automata and context-free grammars into Parikh equivalent one-way and two-way deterministic automata
【24h】

Converting nondeterministic automata and context-free grammars into Parikh equivalent one-way and two-way deterministic automata

机译:将非确定性自动机和无上下文语法转换为Parikh等效的单向和双向确定性自动机

获取原文
获取原文并翻译 | 示例

摘要

We investigate the conversion of one-way nondeterministic finite automata and context-free grammars into Parikh equivalent one-way and two-way deterministic finite automata, from a descriptional complexity point of view. We prove that for each one-way nondeterministic automaton with n states there exist Parikh equivalent one-way and two-way deterministic automata with e~(0(1/2n·lnn)) and p(n) states, respectively, where p(n) is a polynomial. Furthermore, these costs are tight. In contrast, if all the words accepted by the given automaton contain at least two different letters, then a Parikh equivalent one-way deterministic automaton with a polynomial number of states can be found. Concerning context-free grammars, we prove that for each grammar in Chomsky normal form with h variables there exist Parikh equivalent one-way and two-way deterministic automata with 2~(0(h~2)) and 2~(0(h)) states, respectively. Even these bounds are tight.
机译:从描述复杂性的角度,我们研究了单向非确定性有限自动机和上下文无关语法到Parikh等效单向和双向确定性有限自动机的转换。我们证明,对于每个具有n个状态的单向非确定性自动机,分别存在具有e〜(0(1 / 2n·lnn))和p(n)个状态的Parikh等效单向和确定性自动机,其中p (n)是一个多项式。此外,这些成本很严格。相反,如果给定自动机接受的所有单词都包含至少两个不同的字母,则可以找到具有多项式状态的Parikh等效单向确定性自动机。关于上下文无关文法,我们证明对于带有h变量的Chomsky范式中的每个文法,存在Parikh等价的单向和双向确定性自动机,分别具有2〜(0(h〜2))和2〜(0(h) ))状态。即使这些界限是紧密的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号