首页> 外文会议>International Conference on Control, Automation and Systems >Improvement of Extended Kalman Filter Using Invariant Extended Kalman Filter
【24h】

Improvement of Extended Kalman Filter Using Invariant Extended Kalman Filter

机译:使用不变扩展卡尔曼滤波器对扩展卡尔曼滤波器的改进

获取原文

摘要

This paper reports an implementation of invariant extended Kalman filter (IEKF) which improves extended Kalman filter (EKF). The IEKF applies group transformation to state variables and measurement variables based on Lie algebra, thus transforms a non-linear process and measurement system to a locally linear system. Therefore, IEKF approach extends the state space where convergence of states and covariance are guarantees. The implementation estimates the location and attitude of an unmanned aerial vehicle (UAV) using the measurements of the position and velocity from a GNSS, acceleration and angular rate from an IMU, and height by a barometric altimeter. The results show that the estimated location and attitude reasonably tracks the UAV trajectory and the Kalman gain and error covariance converges to constant value.
机译:本文报告了不变扩展卡尔曼滤波器(IEKF)的实现,它改进了扩展卡尔曼滤波器(EKF)。 IEKF基于李代数将组转换应用于状态变量和测量变量,从而将非线性过程和测量系统转换为局部线性系统。因此,IEKF方法扩展了保证状态收敛和协方差的状态空间。该实现使用从GNSS来的位置和速度,从IMU来的加速度和角速率以及通过气压高度计测量的高度来估计无人机的位置和姿态。结果表明,估计的位置和姿态合理地跟踪了无人机的轨迹,并且卡尔曼增益和误差协方差收敛到恒定值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号