首页> 外文会议>International Conference on Control, Automation and Systems >Recognizing Human-Object Interactions via Target Localization
【24h】

Recognizing Human-Object Interactions via Target Localization

机译:通过目标定位识别人与物体的相互作用

获取原文

摘要

The recognition of human-object interactions is a challenging problem due to the variety of object appearance, body poses, occlusions and the scene layout. The difficulty is particularly pronounced in actions interacting with small and partially occluded objects. Indeed, it is difficult to identify those objects by general object detectors, which makes it hard for accurate recognition of human-object interactions. In order to deal with this challenge, we propose a target prediction model that aims to identify regions relevant to the human-object interactions. Our model predicts the precise target location relating to the specific action by formulating it to a fully convolutional network that enables fine-grained localization. We jointly learn the appearance and location of the target by exploiting the target-specific segmentation information. We show that our target prediction model outperforms state-of-the-art methods in identifying small and occluded objects, and its result can be used to improve the recognition of human-object interactions.
机译:由于物体外观,身体姿势,遮挡物和场景布局的多样性,人与物体之间的相互作用的识别是一个具有挑战性的问题。在与小的且部分被遮挡的物体相互作用的动作中,该困难尤其明显。实际上,难以通过通用物体检测器识别那些物体,这使得难以准确识别人-物体的相互作用。为了应对这一挑战,我们提出了一种目标预测模型,旨在识别与人-物相互作用相关的区域。我们的模型通过将其表述为能够进行细粒度定位的完全卷积网络,来预测与特定动作相关的精确目标位置。我们通过利用特定于目标的细分信息来共同学习目标的外观和位置。我们证明了我们的目标预测模型在识别小型物体和闭塞物体方面优于最新方法,其结果可用于改善人与物体交互作用的识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号