首页> 外文会议>International Conference on Control, Automation and Systems >Finding a High Accuracy Neural Network for the Welding Defects Classification Using Efficient Neural Architecture Search via Parameter Sharing
【24h】

Finding a High Accuracy Neural Network for the Welding Defects Classification Using Efficient Neural Architecture Search via Parameter Sharing

机译:通过参数共享的高效神经架构搜索,找到用于焊接缺陷分类的高精度神经网络

获取原文

摘要

Recent studies have shown that convolutional neural networks are achieving the best performance in image classification problems [1]. Thus, welding defects inspection in factory automation process can be performed using convolutional neural networks to determine whether welds on a mechanical part are defective or not. In deep learning area, it is well-known that finding the proper neural network architecture for specific task is highly difficult because there are so many available structures to choose from. Therefore, in this paper, we test and evaluate a method to select the novel convolutional neural network to determine whether the architecture search method is effective for the welding defect images. The method is based on using Efficient Neural Architecture Search via parameter sharing(ENAS) [2]. Using ENAS, we were able to find an architecture that achieved 0% error for 1,322 test images. Also, in the case of the MNIST dataset, we could find a novel architecture that achieved 99.77% accuracy for 10,000 test images.
机译:最近的研究表明,卷积神经网络在图像分类问题中取得了最佳性能[1]。因此,可以使用卷积神经网络执行工厂自动化过程中的焊接缺陷检查,以确定机械零件上的焊接是否有缺陷。在深度学习领域,众所周知,为特定任务找到合适的神经网络架构非常困难,因为有很多可用的结构可供选择。因此,在本文中,我们测试和评估了一种选择新型卷积神经网络的方法,以确定结构搜索方法对于焊接缺陷图像是否有效。该方法基于通过参数共享(ENAS)[2]使用有效的神经体系结构搜索。使用ENAS,我们能够找到一种架构,对于1,322张测试图像,其错误率达到0%。同样,对于MNIST数据集,我们可以找到一种新颖的体系结构,对于10,000张测试图像,该体系结构的准确度达到了99.77%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号