首页> 外文会议>International Conference on Cooperative Design, Visualization and Engineering >Machine Learning Method for Spinning Cyber-Physical Production System Subject to Condition Monitoring
【24h】

Machine Learning Method for Spinning Cyber-Physical Production System Subject to Condition Monitoring

机译:用于状态监控的纺纱物理生产系统的机器学习方法

获取原文

摘要

Digitalization encapsulates the importance of machine condition monitoring which is subjected to predictive analytics for realizing significant improvements in the performance and reliability of rotating equipment i.e., spinning. This paper presents a machine learning approach for condition monitoring, based on a regularized deep neural network using automated diagnostics for spinning manufacturing. This article contributes a solution to find disturbances in a running system through real-time data sensing and signal to process via industrial internet of things. Because this controlled sensor network may comprise on different critical components of the same type of machines, therefore back propagation neural network based multi-sensor performance assessment and prediction strategy were developed for our system which worked as intelligent maintenance and diagnostic system. It is completely automatic requiring no manual extraction of handcrafted features.
机译:数字化封装了机器状态监控的重要性,对机器状态监控进行了预测分析,以实现旋转设备(即旋转)的性能和可靠性的显着提高。本文提出了一种用于机器状态监测的机器学习方法,该方法基于正则化深度神经网络,使用自动诊断技术来进行纺纱制造。本文提供了一种解决方案,可通过实时数据感测和通过工业物联网进行信号处理来发现正在运行的系统中的干扰。由于此受控传感器网络可能包含在同一类型机器的不同关键组件上,因此为我们的系统开发了基于反向传播神经网络的多传感器性能评估和预测策略,该系统用作智能维护和诊断系统。它是完全自动的,不需要手动提取手工特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号