【24h】

Mathematical analysis on bronchitis infection

机译:支气管炎感染的数学分析

获取原文

摘要

Influenza is a very highly contagious respiratory disease. In this work, we are considering the population to treatment for influenza with secondary bacterial infection of bronchitis. The mathematical model constrains are number of susceptible(S), Infected with Influenza (D), Treatment(T), Infected with bronchitis(I2), Recovered(R). The equilibrium and stability analysis represented in this work. This mathematical model concludes that the present situation of treatment is successful only 79.9%, so some necessary actions are required in this direction.
机译:流感是一种高度传染性的呼吸系统疾病。在这项工作中,我们正在考虑人群中继发于支气管炎继发细菌感染的流感。数学模型的约束条件是易感性(S),感染了流感(D),治疗(T),感染了支气管炎(I2),恢复了(R)的数量。平衡和稳定性分析代表了这项工作。该数学模型得出的结论是,目前的治疗成功率仅为79.9%,因此需要朝这个方向采取一些必要的措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号