首页> 外文会议>International Conference on Computer Vision >SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic Segmentation
【24h】

SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic Segmentation

机译:SSF-DAN:基于分离的语义特征的域自适应网络,用于语义分割

获取原文

摘要

Despite the great success achieved by supervised fully convolutional models in semantic segmentation, training the models requires a large amount of labor-intensive work to generate pixel-level annotations. Recent works exploit synthetic data to train the model for semantic segmentation, but the domain adaptation between real and synthetic images remains a challenging problem. In this work, we propose a Separated Semantic Feature based domain adaptation network, named SSF-DAN, for semantic segmentation. First, a Semantic-wise Separable Discriminator (SS-D) is designed to independently adapt semantic features across the target and source domains, which addresses the inconsistent adaptation issue in the class-wise adversarial learning. In SS-D, a progressive confidence strategy is included to achieve a more reliable separation. Then, an efficient Class-wise Adversarial loss Reweighting module (CA-R) is introduced to balance the class-wise adversarial learning process, which leads the generator to focus more on poorly adapted classes. The presented framework demonstrates robust performance, superior to state-of-the-art methods on benchmark datasets.
机译:尽管有监督的全卷积模型在语义分割中取得了巨大的成功,但是训练模型需要大量的劳动密集型工作才能生成像素级注释。最近的工作利用合成数据来训练用于语义分割的模型,但是真实图像和合成图像之间的域适应仍然是一个具有挑战性的问题。在这项工作中,我们提出了一个基于分离语义特征的域自适应网络,称为SSF-DAN,用于语义分割。首先,设计了一种语义明智的可区分标识符(SS-D),以在目标域和源域之间独立地适应语义特征,从而解决了类别对抗性学习中不一致的适应问题。在SS-D中,包括一种渐进置信策略,以实现更可靠的分离。然后,引入了有效的按类别对抗损失重加权模块(CA-R),以平衡按类别对抗学习过程,这使生成器将更多的精力放在适应性较差的类别上。所展示的框架展示了强大的性能,优于基准数据集上的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号