首页> 外文会议>International Conference on Computer Vision >Face De-Occlusion Using 3D Morphable Model and Generative Adversarial Network
【24h】

Face De-Occlusion Using 3D Morphable Model and Generative Adversarial Network

机译:使用3D变形模型和生成对抗网络进行人脸去遮挡

获取原文

摘要

In recent decades, 3D morphable model (3DMM) has been commonly used in image-based photorealistic 3D face reconstruction. However, face images are often corrupted by serious occlusion by non-face objects including eyeglasses, masks, and hands. Such objects block the correct capture of landmarks and shading information. Therefore, the reconstructed 3D face model is hardly reusable. In this paper, a novel method is proposed to restore de-occluded face images based on inverse use of 3DMM and generative adversarial network. We utilize the 3DMM prior to the proposed adversarial network and combine a global and local adversarial convolutional neural network to learn face de-occlusion model. The 3DMM serves not only as geometric prior but also proposes the face region for the local discriminator. Experiment results confirm the effectiveness and robustness of the proposed algorithm in removing challenging types of occlusions with various head poses and illumination. Furthermore, the proposed method reconstructs the correct 3D face model with de-occluded textures.
机译:近几十年来,3D可变形模型(3DMM)已普遍用于基于图像的逼真的3D人脸重建中。但是,由于眼镜,口罩和手等非脸部物体的严重遮挡,脸部图像经常会被破坏。这样的对象会阻止对地标和阴影信息的正确捕获。因此,重建的3D人脸模型几乎不可重用。本文提出了一种基于3DMM逆生成和生成对抗网络的方法来恢复被遮挡的人脸图像。我们在提出的对抗网络之前利用了3DMM,并结合了全局和局部对抗卷积神经网络来学习人脸去遮挡模型。 3DMM不仅可以用作几何先验,而且还可以为局部鉴别器提供面部区域。实验结果证实了该算法在消除具有各种头部姿势和照明的挑战性遮挡类型方面的有效性和鲁棒性。此外,提出的方法使用去遮挡的纹理重建正确的3D人脸模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号