首页> 外文会议>International Conference on Computer Vision >CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation
【24h】

CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation

机译:CAMEL:组织病理学图像分割的弱监督学习框架

获取原文

摘要

Histopathology image analysis plays a critical role in cancer diagnosis and treatment. To automatically segment the cancerous regions, fully supervised segmentation algorithms require labor-intensive and time-consuming labeling at the pixel level. In this research, we propose CAMEL, a weakly supervised learning framework for histopathology image segmentation using only image-level labels. Using multiple instance learning (MIL)-based label enrichment, CAMEL splits the image into latticed instances and automatically generates instance-level labels. After label enrichment, the instance-level labels are further assigned to the corresponding pixels, producing the approximate pixel-level labels and making fully supervised training of segmentation models possible. CAMEL achieves comparable performance with the fully supervised approaches in both instance-level classification and pixel-level segmentation on CAMELYON16 and a colorectal adenoma dataset. Moreover, the generality of the automatic labeling methodology may benefit future weakly supervised learning studies for histopathology image analysis.
机译:组织病理学图像分析在癌症的诊断和治疗中起着至关重要的作用。为了自动分割癌变区域,在完全监督的分割算法下,需要在像素级别进行费时费力的标记工作。在这项研究中,我们提出了CAMEL,一种仅使用图像级标签进行组织病理学图像分割的弱监督学习框架。通过使用基于多实例学习(MIL)的标签扩充功能,CAMEL可以将图像分割成点状的实例,并自动生成实例级别的标签。在标签丰富之后,将实例级标签进一步分配给相应的像素,从而生成近似的像素级标签,并使对分割模型进行完全监督的训练成为可能。 CAMEL在CAMELYON16和结直肠腺瘤数据集上的实例级分类和像素级分割方面,通过完全监督的方法达到了可比的性能。此外,自动标记方法的一般性可能有益于将来对组织病理学图像分析的弱监督学习研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号