首页> 外文会议>International Conference on Computer Vision >P-MVSNet: Learning Patch-Wise Matching Confidence Aggregation for Multi-View Stereo
【24h】

P-MVSNet: Learning Patch-Wise Matching Confidence Aggregation for Multi-View Stereo

机译:P-MVSNet:为多视图立体声学习明智的匹配置信度聚合

获取原文

摘要

Learning-based methods are demonstrating their strong competitiveness in estimating depth for multi-view stereo reconstruction in recent years. Among them the approaches that generate cost volumes based on the plane-sweeping algorithm and then use them for feature matching have shown to be very prominent recently. The plane-sweep volumes are essentially anisotropic in depth and spatial directions, but they are often approximated by isotropic cost volumes in those methods, which could be detrimental. In this paper, we propose a new end-to-end deep learning network of P-MVSNet for multi-view stereo based on isotropic and anisotropic 3D convolutions. Our P-MVSNet consists of two core modules: a patch-wise aggregation module learns to aggregate the pixel-wise correspondence information of extracted features to generate a matching confidence volume, from which a hybrid 3D U-Net then infers a depth probability distribution and predicts the depth maps. We perform extensive experiments on the DTU and Tanks & Temples benchmark datasets, and the results show that the proposed P-MVSNet achieves the state-of-the-art performance over many existing methods on multi-view stereo.
机译:近年来,基于学习的方法正在证明其在估计多视图立体声重建深度方面的强大竞争力。在这些方法中,基于平面扫描算法生成成本量然后将其用于特征匹配的方法近来已非常显着。平面扫描量在深度和空间方向上基本上是各向异性的,但是在这些方法中,它们通常用各向同性成本量来近似,这可能是有害的。在本文中,我们提出了一种新的端到端的P-MVSNet深度学习网络,用于基于各向同性和各向异性3D卷积的多视图立体声。我们的P-MVSNet由两个核心模块组成:逐块聚合模块学习聚合提取特征的逐像素对应信息以生成匹配的置信度,然后从混合3D U-Net推断深度概率分布;预测深度图。我们在DTU和Tanks&Temples基准数据集上进行了广泛的实验,结果表明,所提出的P-MVSNet在许多现有的多视图立体声方法上都达到了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号