首页> 外文会议>International Conference on Computer Vision >Stacked Cross Refinement Network for Edge-Aware Salient Object Detection
【24h】

Stacked Cross Refinement Network for Edge-Aware Salient Object Detection

机译:堆叠式交叉优化网络用于边缘感知的显着目标检测

获取原文

摘要

Salient object detection is a fundamental computer vision task. The majority of existing algorithms focus on aggregating multi-level features of pre-trained convolutional neural networks. Moreover, some researchers attempt to utilize edge information for auxiliary training. However, existing edge-aware models design unidirectional frameworks which only use edge features to improve the segmentation features. Motivated by the logical interrelations between binary segmentation and edge maps, we propose a novel Stacked Cross Refinement Network (SCRN) for salient object detection in this paper. Our framework aims to simultaneously refine multi-level features of salient object detection and edge detection by stacking Cross Refinement Unit (CRU). According to the logical interrelations, the CRU designs two direction-specific integration operations, and bidirectionally passes messages between the two tasks. Incorporating the refined edge-preserving features with the typical U-Net, our model detects salient objects accurately. Extensive experiments conducted on six benchmark datasets demonstrate that our method outperforms existing state-of-the-art algorithms in both accuracy and efficiency. Besides, the attribute-based performance on the SOC dataset show that the proposed model ranks first in the majority of challenging scenes. Code can be found at https://github.com/wuzhe71/SCAN.
机译:显着物体检测是计算机视觉的基本任务。现有的大多数算法都集中于聚合预训练卷积神经网络的多级特征。此外,一些研究人员试图利用边缘信息进行辅助训练。但是,现有的边缘感知模型设计的单向框架仅使用边缘特征来改善分割特征。基于二进制分割和边缘图之间的逻辑相互关系,本文提出了一种新颖的堆叠交叉细化网络(SCRN),用于显着目标检测。我们的框架旨在通过堆叠交叉优化单元(CRU)来同时优化显着对象检测和边缘检测的多级功能。根据逻辑关系,CRU设计了两个特定于方向的集成操作,并在两个任务之间双向传递消息。我们的模型将完善的边缘保留功能与典型的U-Net结合在一起,可以准确地检测出突出的物体。在六个基准数据集上进行的大量实验表明,我们的方法在准确性和效率上均优于现有的最新算法。此外,SOC数据集上基于属性的性能表明,该模型在大多数具有挑战性的场景中均排名第一。可以在https://github.com/wuzhe71/SCAN上找到代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号