首页> 外文会议>International Conference on Computer Vision >Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks
【24h】

Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks

机译:双边对抗训练:旨在快速训练更强大的对抗对抗攻击的模型

获取原文

摘要

In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training~cite{madry2017towards}, we hypothesize that the gradient magnitude links to the model robustness. Motivated by this, we propose to perturb both the image and the label during training, which we call Bilateral Adversarial Training (BAT). To generate the adversarial label, we derive an closed-form heuristic solution. To generate the adversarial image, we use one-step targeted attack with the target label being the most confusing class. In the experiment, we first show that random start and the most confusing target attack effectively prevent the label leaking and gradient masking problem. Then coupled with the adversarial label part, our model significantly improves the state-of-the-art results. For example, against PGD100 white-box attack with cross-entropy loss, on CIFAR10, we achieve 63.7% versus 47.2%; on SVHN, we achieve 59.1% versus 42.1%. At last, the experiment on the very (computationally) challenging ImageNet dataset further demonstrates the effectiveness of our fast method.
机译:在本文中,我们研究了对抗性鲁棒模型的快速训练。通过对最新防御方法(即多步对抗训练〜引用{madry2017towards})的分析,我们假设梯度幅度与模型的鲁棒性有关。因此,我们建议在训练过程中干扰图像和标签,我们将其称为双边对抗训练(BAT)。为了生成对抗标签,我们导出了一种封闭形式的启发式解决方案。为了生成对抗性图像,我们使用目标标签是最容易混淆的类的一步式针对性攻击。在实验中,我们首先表明随机启动和最令人困惑的目标攻击有效地防止了标签泄漏和梯度掩盖问题。然后,再加上对抗标签部分,我们的模型将极大地改善最新结果。例如,针对带有交叉熵损失的PGD100白盒攻击,在CIFAR10上,我们获得了63.7%的对47.2%的对;在SVHN上,我们达到了59.1%,而同期为42.1%。最后,在极富挑战性的ImageNet数据集上的实验进一步证明了我们快速方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号