首页> 外文会议>International Conference on Computer Vision >Integral Object Mining via Online Attention Accumulation
【24h】

Integral Object Mining via Online Attention Accumulation

机译:通过在线注意力累积进行整体对象挖掘

获取原文

摘要

Object attention maps generated by image classifiers are usually used as priors for weakly-supervised segmentation approaches. However, normal image classifiers produce attention only at the most discriminative object parts, which limits the performance of weakly-supervised segmentation task. Therefore, how to effectively identify entire object regions in a weakly-supervised manner has always been a challenging and meaningful problem. We observe that the attention maps produced by a classification network continuously focus on different object parts during training. In order to accumulate the discovered different object parts, we propose an online attention accumulation (OAA) strategy which maintains a cumulative attention map for each target category in each training image so that the integral object regions can be gradually promoted as the training goes. These cumulative attention maps, in turn, serve as the pixel-level supervision, which can further assist the network in discovering more integral object regions. Our method (OAA) can be plugged into any classification network and progressively accumulate the discriminative regions into integral objects as the training process goes. Despite its simplicity, when applying the resulting attention maps to the weakly-supervised semantic segmentation task, our approach improves the existing state-of-the-art methods on the PASCAL VOC 2012 segmentation benchmark, achieving a mIoU score of 66.4% on the test set. Code is available at https://mmcheng.net/oaa/.
机译:由图像分类器生成的对象注意图通常用作弱监督分割方法的先验。但是,普通的图像分类器仅在最有区别的对象部分引起关注,这限制了弱监督分割任务的性能。因此,如何以弱监督的方式有效地识别整个物体区域一直是具有挑战性和有意义的问题。我们观察到,分类网络产生的注意力图在训练过程中持续关注不同的对象部分。为了累积发现的不同对象部分,我们提出了一种在线注意累积(OAA)策略,该策略为每个训练图像中的每个目标类别维护了一个累积注意图,以便随着训练的进行逐步提升整体对象区域。这些累积的注意力图依次充当像素级监控,可以进一步帮助网络发现更多完整的对象区域。我们的方法(OAA)可以插入到任何分类网络中,并随着训练过程的进行逐渐将区分区域累积为不可分割的对象。尽管它很简单,但是当将得到的注意力图应用于弱监督的语义分割任务时,我们的方法改进了PASCAL VOC 2012分割基准上现有的最新方法,在测试中的mIoU得分达到66.4%组。可以从https://mmcheng.net/oaa/获得代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号