首页> 外文会议>International Conference on Computer Vision >Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting
【24h】

Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting

机译:用于人群计数的多级底部-顶部和顶部-底部特征融合

获取原文

摘要

Crowd counting presents enormous challenges in the form of large variation in scales within images and across the dataset. These issues are further exacerbated in highly congested scenes. Approaches based on straightforward fusion of multi-scale features from a deep network seem to be obvious solutions to this problem. However, these fusion approaches do not yield significant improvements in the case of crowd counting in congested scenes. This is usually due to their limited abilities in effectively combining the multi-scale features for problems like crowd counting. To overcome this, we focus on how to efficiently leverage information present in different layers of the network. Specifically, we present a network that involves: (i) a multi-level bottom-top and top-bottom fusion (MBTTBF) method to combine information from shallower to deeper layers and vice versa at multiple levels, (ii) scale complementary feature extraction blocks (SCFB) involving cross-scale residual functions to explicitly enable flow of complementary features from adjacent conv layers along the fusion paths. Furthermore, in order to increase the effectiveness of the multi-scale fusion, we employ a principled way of generating scale-aware ground-truth density maps for training. Experiments conducted on three datasets that contain highly congested scenes (ShanghaiTech, UCF_CC_50, and UCF-QNRF) demonstrate that the proposed method is able to outperform several recent methods in all the datasets
机译:人群计数以图像内和整个数据集中尺度的巨大变化形式提出了巨大的挑战。在高度拥挤的场景中,这些问题会进一步加剧。基于来自深度网络的多尺度特征的直接融合的方法似乎是解决此问题的明显方法。但是,在拥挤场景中的人群计数情况下,这些融合方法无法带来显着改善。这通常是由于它们有效组合多尺度特征以解决诸如人群计数之类的问题的能力有限。为了克服这个问题,我们专注于如何有效利用网络不同层中存在的信息。具体而言,我们提出了一个涉及以下内容的网络:(i)多级别的自上而下和自上而下的融合(MBTTBF)方法,可将较浅层到较深层的信息进行组合,反之亦然,在多个层次上,(ii)规模化互补特征提取涉及跨尺度残差函数的块(SCFB)可以显式地使互补特征沿着融合路径从相邻的conv层流动。此外,为了提高多尺度融合的有效性,我们采用了一种原则性的方法来生成用于训练的可感知尺度的地面真相密度图。对包含高度拥挤场景的三个数据集(ShanghaiTech,UCF_CC_50和UCF-QNRF)进行的实验表明,该方法能够胜过所有数据集中的几种最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号