首页> 外文会议>International Conference on Computer Vision >Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels
【24h】

Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels

机译:用于多任务CNN的随机过滤器组:学习专家和通用卷积核

获取原文

摘要

The performance of multi-task learning in Convolutional Neural Networks (CNNs) hinges on the design of feature sharing between tasks within the architecture. The number of possible sharing patterns are combinatorial in the depth of the network and the number of tasks, and thus hand-crafting an architecture, purely based on the human intuitions of task relationships can be time-consuming and suboptimal. In this paper, we present a probabilistic approach to learning task-specific and shared representations in CNNs for multi-task learning. Specifically, we propose 'stochastic filter groups' (SFG), a mechanism to assign convolution kernels in each layer to 'specialist' and 'generalist' groups, which are specific to and shared across different tasks, respectively. The SFG modules determine the connectivity between layers and the structures of task-specific and shared representations in the network. We employ variational inference to learn the posterior distribution over the possible grouping of kernels and network parameters. Experiments demonstrate the proposed method generalises across multiple tasks and shows improved performance over baseline methods.
机译:卷积神经网络(CNN)中多任务学习的性能取决于体系结构中任务之间功能共享的设计。可能的共享模式的数量在网络的深度和任务的数量上是组合的,因此仅基于人类对任务关系的直觉来手工设计架构可能既耗时又次优。在本文中,我们提出了一种概率方法,用于在多任务学习中的CNN中学习特定于任务和共享的表示形式。具体来说,我们提出“随机过滤器组”(SFG),这是一种将每层卷积内核分配给“专家”组和“一般主义者”组的机制,这两个组分别针对不同的任务并在不同任务之间共享。 SFG模块确定层之间的连通性以及网络中任务特定和共享表示的结构。我们采用变分推理来了解内核和网络参数可能分组的后验分布。实验证明了所提出的方法可以概括多个任务,并显示出比基线方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号