首页> 外文会议>International Conference on Computer Science and Service System;CSSS 2012 >A Hybrid PSO and Active Learning SVM Model for Relevance Feedback in the Content-Based Images Retrieval
【24h】

A Hybrid PSO and Active Learning SVM Model for Relevance Feedback in the Content-Based Images Retrieval

机译:基于内容的图像检索中相关反馈的混合PSO和主动学习SVM模型

获取原文

摘要

Relevance feedback (RF) based on Support Vector Machines (SVMs) has been widely used in the Content-based image retrieval (CBIR). However, three problems are confronted: how to choose the optimal input feature subset, how to set the best kernel parameters, and the training data is scare in the RF procedure. To address those problems, an improved relevance feedback system based on hybrid PSO and active learning SVM model was proposed in this text. In the new model, the PSO with/without feature selection can optimal the parameters ( and ) and sub-features in the SVM classifier. And, the active SVM was applied on actively selecting most information images that minimizes redundancy between the candidate images shown to the user. The experimental results show the proposed approach has the speedy convergence and good results in the relevant feedback system.
机译:基于支持向量机(SVM)的相关性反馈(RF)已被广泛用于基于内容的图像检索(CBIR)中。然而,面临三个问题:如何选择最佳输入特征子集,如何设置最佳内核参数以及在RF程序中缺乏训练数据。为了解决这些问题,本文提出了一种基于混合PSO和主动学习SVM模型的改进的相关反馈系统。在新模型中,具有/不具有功能选择的PSO可以优化SVM分类器中的参数(和)和子功能。并且,将主动SVM应用于主动选择大多数信息图像,以最大程度地减少显示给用户的候选图像之间的冗余。实验结果表明,该方法在相关反馈系统中具有快速收敛性和良好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号