首页> 外文会议>International conference on computer information science;ICCIS 2012;ESTCON;World engineering, science technology congress >Colorectal cancer image classification using image pre-processing and multilayer Perceptron
【24h】

Colorectal cancer image classification using image pre-processing and multilayer Perceptron

机译:使用图像预处理和多层感知器对大肠癌进行图像分类

获取原文

摘要

Manual screening of colorectal biopsy tissue under microscope to conform the presence of cancerous cell is difficult and time consuming. The criteria in diagnosing colorectal cancer cell are gland shape and nucleus size. In this paper, we proposed a method of automatic image pre-processing to extract important feature of colorectal tissue images. Images captured under microscope may vary in color brightness due to different staining concentration and the size of biopsy tissue. In this paper we proposed a method using HSV color to remove element outside the area of nucleus. In order to extract the gland shape, we proposed a gland tracking boundary and segmentation. By using the result of gland tracking, nucleus size that forms the glands are measured. Multilayer Perceptron is being used to detect the shape of glands. By combining result of gland shape and nucleus size, we perform the image classification. The result shows that classification achieves 94% accuracy by using the proposed methods.
机译:在显微镜下手动筛查结肠直肠活检组织以适应癌细胞的存在是困难且耗时的。诊断大肠癌细胞的标准是腺体形状和细胞核大小。在本文中,我们提出了一种自动图像预处理的方法来提取大肠组织图像的重要特征。由于不同的染色浓度和活检组织的大小,在显微镜下捕获的图像的颜色亮度可能会有所不同。在本文中,我们提出了一种使用HSV颜色去除核区域外部元素的方法。为了提取腺体形状,我们提出了腺体跟踪边界和分割。通过使用腺体追踪的结果,可以测量形成腺体的细胞核大小。多层感知器被用于检测腺体的形状。通过结合腺体形状和细胞核大小的结果,我们进行图像分类。结果表明,该分类方法的分类准确率达到94%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号