首页> 外文会议>International Conference on Computer Communication and Networks >Workload Partitioning and Task Migration to Reduce Response Times in Heterogeneous Computing Environments
【24h】

Workload Partitioning and Task Migration to Reduce Response Times in Heterogeneous Computing Environments

机译:工作负载分区和任务迁移,以减少异构计算环境中的响应时间

获取原文

摘要

Today's modern computing landscape consists of a huge amount of heterogeneous devices, including powerful, stable desktop computers as well as lightweight, unreliable mobile edge devices. This heterogeneity in terms of computation power and reliability increases the complexity for fault tolerance in distributed computing systems. When tasks are offloaded, slow resource providers easily become the bottleneck of a parallel computation. Further, unstable edge devices can leave the system spontaneously, discontinue remote tasks executions, and therefore lose the computation progress. These two effects increase the response time for remote task executions. In this paper, we introduce two mechanisms to avoid delayed or lost task executions caused by edge devices. This paper has five contributions. First, we define a failure model and identify the parameters that determine the magnitude of delays caused by faults and performance bottlenecks. Second, we present reactive and proactive task migration to handle system leaves. Third, we show how computational bottlenecks can be avoided by two-dimensional context-aware task partitioning. Fourth, we integrate these two solutions into an existing heterogeneous distributed computing system. Fifth, we run an evaluation on a real- world testbed to show the benefits of the solutions in practice. The evaluation shows, that we can improve systems with device fluctuation and heterogeneity by up to 39% and 53% respectively.
机译:当今的现代计算环境包括大量的异构设备,包括功能强大,稳定的台式计算机以及轻巧,不可靠的移动边缘设备。就计算能力和可靠性而言,这种异质性增加了分布式计算系统中容错的复杂性。当任务卸载时,速度慢的资源提供者很容易成为并行计算的瓶颈。此外,不稳定的边缘设备会自发离开系统,中断远程任务执行,因此会丢失计算进度。这两个效果增加了远程任务执行的响应时间。在本文中,我们介绍了两种机制来避免边缘设备导致的任务执行延迟或丢失。本文有五篇论文。首先,我们定义一个故障模型并确定确定故障和性能瓶颈所导致的延迟量的参数。其次,我们介绍了响应式和主动式任务迁移以处理系统叶子。第三,我们展示了如何通过二维上下文感知任务划分来避免计算瓶颈。第四,我们将这两种解决方案集成到现有的异构分布式计算系统中。第五,我们在真实的测试平台上进行了评估,以显示解决方案在实践中的好处。评估显示,我们可以将具有设备波动和异构性的系统分别提高39%和53%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号