首页> 外文会议>International Conference on Computer Communication and Networks >Deep Learning-Based Malicious Account Detection in the Momo Social Network
【24h】

Deep Learning-Based Malicious Account Detection in the Momo Social Network

机译:Momo社交网络中基于深度学习的恶意帐户检测

获取原文

摘要

Due to the rapid development of mobile devices and location-based services, location-based social networks (LBSNs) have become very popular in our daily-life. Malicious account detection is very helpful for different kinds of practical applications. In this paper, we explore the malicious account detection problem by introducing a deep learning-based framework. By using the long short-term memory (LSTM) neural network, we are able to build a classifier to achieve the binary classification. By using the real data collected from Momo, a widely used LBSN which has more than 180 million users around the world, we evaluate our framework and the result shows great promise for malicious account detection tasks.
机译:由于移动设备和基于位置的服务的快速发展,基于位置的社交网络(LBSN)在我们的日常生活中变得非常流行。恶意帐户检测对于不同种类的实际应用非常有帮助。在本文中,我们通过引入基于深度学习的框架来探索恶意帐户检测问题。通过使用长短期记忆(LSTM)神经网络,我们能够构建分类器以实现二进制分类。通过使用从Momo(一个广泛使用的LBSN,在全球拥有超过1.8亿用户)收集的真实数据,我们对我们的框架进行了评估,结果显示出对恶意帐户检测任务的巨大希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号