首页> 外文会议>International Conference on Computer Communication and Networks >Robust WiFi-Enabled Device-Free Gesture Recognition via Unsupervised Adversarial Domain Adaptation
【24h】

Robust WiFi-Enabled Device-Free Gesture Recognition via Unsupervised Adversarial Domain Adaptation

机译:通过无监督的对抗域自适应实现强大的支持WiFi的无设备手势识别

获取原文

摘要

Accurate human gesture recognition is becoming a cornerstone for myriad emerging applications in human-computer interaction. Existing gesture recognition systems either require dedicated extra infrastructure or user's active cooperation. Although some WiFi-enabled gesture recognition systems have been proposed, they are vulnerable to environmental dynamics and rely on the tedious data re-labeling and expert knowledge each time being implemented in a new environment. In this paper, we propose a WiFi- enabled device-free adaptive gesture recognition scheme, WiADG, that is able to identify human gestures accurately and consistently under environmental dynamics via adversarial domain adaptation. Firstly, a novel OpenWrt-based IoT platform is developed, enabling the direct collection of Channel State Information (CSI) measurements from commercial IoT devices. After constructing an accurate source classifier with labeled source CSI data via the proposed convolutional neural network in the source domain (original environment), we design an unsupervised domain adaptation scheme to reduce the domain discrepancy between the source and the target domain (new environment) and thus improve the generalization performance of the source classifier. The domain- adversarial objective is to train a generator (target encoder) to map the unlabeled target data to a domain invariant latent feature space so that a domain discriminator cannot distinguish the domain labels of the data. In the phase of implementation, we utilize the trained target encoder to map the target CSI frame to the latent feature space and use the source classifier to identify various gestures performed by the user. We implement WiADG on commercial WiFi routers and conduct experiments in multiple indoor environments. The results validate that WiADG achieves 98% gesture recognition accuracy in the original environment. Furthermore, the proposed unsupervised adversarial domain adaptation is able to enhance the recognition accuracy of WiADG by 25% on average without the needs of labeled data collection and new classifier generation when implements it in new environments.
机译:准确的手势识别正在成为人机交互中众多新兴应用的基石。现有的手势识别系统要么需要专用的额外基础架构,要么需要用户的积极配合。尽管已经提出了一些支持WiFi的手势识别系统,但它们容易受到环境动态的影响,并且每次在新环境中实施时,都需要乏味的数据重新标记和专家知识。在本文中,我们提出了一种支持WiFi的无设备自适应手势识别方案WiADG,该方案能够通过对抗域自适应在环境动态条件下准确且一致地识别人类手势。首先,开发了一种新颖的基于OpenWrt的物联网平台,可以从商业物联网设备直接收集通道状态信息(CSI)测量。通过在源域(原始环境)中通过拟议的卷积神经网络构造带有标记源CSI数据的准确源分类器后,我们设计了一种无监督域自适应方案,以减少源与目标域之间的域差异(新环境),并从而提高源分类器的泛化性能。领域对抗的目标是训练生成器(目标编码器)以将未标记的目标数据映射到领域不变的潜在特征空间,以便领域识别器无法区分数据的领域标签。在实施阶段,我们利用训练有素的目标编码器将目标CSI帧映射到潜在特征空间,并使用源分类器来识别用户执行的各种手势。我们在商用WiFi路由器上实施WiADG,并在多个室内环境中进行实验。结果证明,WiADG在原始环境中可达到98%的手势识别精度。此外,提出的无监督对抗域自适应能够将WiADG的识别准确度平均提高25%,而无需在新环境中实施时进行标记数据收集和新分类器生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号