首页> 外文会议>International Conference on Computer and Communication Engineering >Distinctive Features for Classification of Respiratory Sounds Between Normal and Crackles Using Cepstral Coefficients
【24h】

Distinctive Features for Classification of Respiratory Sounds Between Normal and Crackles Using Cepstral Coefficients

机译:使用倒谱系数分类正常和裂纹之间的呼吸声的显着特征

获取原文

摘要

Classification of respiratory sounds between normal and abnormal is very crucial for screening and diagnosis purposes. Lung associated diseases can be detected through this technique. With the advancement of computerized auscultation technology, the adventitious sounds such as crackles can be detected and therefore diagnostic test can be performed earlier. In this paper, Mel-frequency Cepstral Coefficient (MFCC) is used to extract features from normal and crackles respiratory sounds. By using statistical computation such as mean and standard deviation (SD) of cepstral based coefficients it can differentiate between crackles and normal sounds. The result shows that the first three statistical values of SD of coefficients provide distinctive feature between normal and crackles respiratory sounds. Hence, MFCCs can be used as feature extraction method of respiratory sounds to classify between normal and crackles as screening and diagnostic tool.
机译:正常和异常之间的呼吸音分类对于筛查和诊断非常重要。肺部相关疾病可以通过这种技术检测出来。随着计算机听诊技术的进步,诸如can啪声之类的不定声音可以被检测到,因此诊断测试可以更早地进行。在本文中,梅尔频率倒谱系数(MFCC)用于从正常和crack啪的呼吸声中提取特征。通过使用统计计算(例如基于倒频谱的系数的平均值和标准偏差(SD)),可以区分differentiate啪声和正常声音。结果表明,系数SD的前三个统计值在正常和crack啪声之间具有鲜明的特征。因此,MFCC可以用作呼吸音的特征提取方法,以在正常和crack裂之间进行分类,作为筛查和诊断的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号