首页> 外文会议>International Conference on Computer Aided Design for Thin-Film Transistor Technologies >Adsorbed property of boron nitride nanotube (BNNT) device: A study of first-principles calculations
【24h】

Adsorbed property of boron nitride nanotube (BNNT) device: A study of first-principles calculations

机译:氮化硼纳米管(BNNT)器件的吸附性能:第一性原理计算的研究

获取原文

摘要

, and nanotubes, have been proposed as potential candidates of gas sensors. The nanotubes are generally porous due to their high reactivity exterior surface, which makes them sensitive to small molecular. As being important low-dimensional materials with wide band gaps, boron nitride nanotubes (BNNTs) have also received considerable interests. Despite the adsorption behavior of pure or doped BNNTs has been reported, the structure and electronic properties of adsorbed small molecule on BNNTs is still ambiguous. Here, we investigate the structure and electronic property of BNNTs device with absorbed small molecules, and then effect of physisorbed small molecules. Fig. 1 displays a BNNT device structure for gas sensors. The first-principles calculations are performed within the framework of density function theory (DFT) by using GGA-PW91. It is found that the sites of LOMO and HOMO would be changed after BNNTs absorbed the different small molecules. The energy gap of BNNTs decreases with increasing the distance between small molecule and BNNT. The adsorption effect of BNNT will be optimal as the distance between the small molecule and BNNT is from 1 to 1.5 Å. The potential application of BNNT as highly sensitive gas sensor for N-based small molecules has also been discussed.
机译:碳纳米管和碳纳米管已被提议作为气体传感器的潜在候选者。纳米管由于其高反应性的外表面而通常是多孔的,这使得它们对小分子敏感。作为具有宽带隙的重要的低维材料,氮化硼纳米管(BNNT)也引起了广泛的关注。尽管已经报道了纯的或掺杂的BNNTs的吸附行为,但是在BNNTs上吸附的小分子的结构和电子性质仍然是模棱两可的。在这里,我们研究具有吸附小分子的BNNTs装置的结构和电子性能,然后研究物理吸附的小分子的作用。图1显示了用于气体传感器的BNNT设备结构。使用GGA-PW91在密度泛函理论(DFT)的框架内执行第一性原理计算。发现在BNNTs吸收不同的小分子后,LOMO和HOMO的位点将发生改变。 BNNTs的能隙随着小分子与BNNT之间距离的增加而减小。当小分子与BNNT之间的距离为1至1.5Å时,BNNT的吸附效果最佳。还讨论了BNNT作为基于N的小分子的高灵敏度气体传感器的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号