首页> 外文会议>International Conference on Computational Electromagnetics >The Hybridizable Discontinuous Galerkin Time Domain Method to Solve the 3D Maxwell's Equations
【24h】

The Hybridizable Discontinuous Galerkin Time Domain Method to Solve the 3D Maxwell's Equations

机译:求解3D Maxwell方程的可混合不连续Galerkin时域方法

获取原文

摘要

The hybridizable discontinuous Galerkin (HDG) method is very popular at present because of its lower number of globally coupled degrees of freedom compared with the discontinuous Galerkin (DG) method. However there is pretty few research about HDG in time domain computational electromagnetics. Considering the time domain methods can contain more the transient information and reflect directly the electromagnetic response characteristics compared the frequency domain, we propose a new hybridizable discontinuous Galerkin time domain (HDGTD) method to solve the Three-Dimensional (3D) time domain Maxwell's equations in this paper. We use the implicit time intergration to achieve unconditional stability compared with the explicit DGTD, which obtains bigger time step and fewer the freedom of unknown. Applying the HDGTD method to numerical example, we further verify its Feasibility and accuracy compared with the DGTD method and the analytical solutions.
机译:可杂交的不连续伽勒金(HDG)方法目前非常流行,因为与不连续伽勒金(DG)方法相比,它的全局耦合自由度较少。但是,关于HDG的时域计算电磁学研究很少。考虑到时域方法比频域可以包含更多的瞬态信息并直接反映电磁响应特性,我们提出了一种新的可混合不连续伽勒金时域(HDGTD)方法来求解三维(3D)时域麦克斯韦方程组。这篇报告。与显式DGTD相比,我们使用隐式时间积分来实现无条件的稳定性,后者获得了更大的时间步长,而未知的自由度则较小。将HDGTD方法应用于数值算例,与DGTD方法和解析解相比,我们进一步验证了其可行性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号