首页> 外文会议>International conference on computational and information sciences >Model-Aided Strapdown Inertial Navigation Integrated Method for AUV Based on H8 Filtering
【24h】

Model-Aided Strapdown Inertial Navigation Integrated Method for AUV Based on H8 Filtering

机译:基于H8滤波的AUV辅助捷联惯性导航集成方法

获取原文

摘要

The integration of Strapdown inertial navigation system (SINS) and Doppler Velocity Log (DVL) is uesd widely in autonomous underwater vehicle (AUV) navigation. However, when the bottom depth is beyond of the DVL detection region, the integrated mode is not effective, thus the error of SINS increases very fast. In this situation, the mathematical model of AUV is constructed based on its dynamics characters. Utilizing the position and velocity output from AUV model to correct SINS, the SINS precision is improved by integrated navigation. Aiming at the problem that traditional Kalman filtering needs to know accurate noise statistics and system model, H8 filtering algorithm is used in this paper to restrain the precision and reliability of the system. Simulation results show that model-aided SINS integrated navigation method based on H8 filtering can improve the precision of SINS, and effectively restrain the Kalman filtering divergence when the model is inaccurate.
机译:捷联惯性导航系统(SINS)和多普勒速度测井(DVL)的集成在自动水下航行器(AUV)导航中得到了广泛应用。但是,当底部深度超出DVL检测区域时,积分模式无效,因此SINS的误差会很快增加。在这种情况下,将基于AUV的动力学特性构建数学模型。利用AUV模型的位置和速度输出校正SINS,通过集成导航提高了SINS的精度。针对传统的卡尔曼滤波需要了解准确的噪声统计信息和系统模型的问题,本文采用H8滤波算法来限制系统的精度和可靠性。仿真结果表明,基于H8滤波的模型辅助捷联惯导组合导航方法可以提高捷联惯导的精度,并在模型不准确时有效抑制卡尔曼滤波的发散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号