首页> 外文会议>International conference on computational and information sciences >Motion Object Detection Based on Adaptive Mixture Gaussian Model and Four-Frame Subtraction
【24h】

Motion Object Detection Based on Adaptive Mixture Gaussian Model and Four-Frame Subtraction

机译:基于自适应混合高斯模型和四帧减法的运动目标检测

获取原文

摘要

In view of background subtraction is influenced by the light and the frame difference is easily affected by double shadow and hole phenomenon in target detection, a motion detection algorithm based on adaptive mixture gaussian model and four-frame subtraction using the dynamic threshold is proposed. In this paper, in order to minimize the negative influences of noise and hole, connected region domain analysis and hole filling algorithm are introduced. The experimental result shows that the algorithm has preferable adaptive performance to the scene with the detection of the moving target accurately.
机译:针对背景减法受光的影响,目标检测中帧差容易受到双阴影和空洞现象的影响,提出了一种基于自适应混合高斯模型和动态阈值四帧减法的运动检测算法。为了最小化噪声和空穴的负面影响,本文介绍了连通区域域分析和空穴填充算法。实验结果表明,该算法能够准确地检测出运动目标,对场景具有较好的自适应性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号