首页> 外文会议>International conference on computational and information sciences >Extracting Sequence Features to Predict DNA-Binding Proteins Using Support Vector Machine
【24h】

Extracting Sequence Features to Predict DNA-Binding Proteins Using Support Vector Machine

机译:使用支持向量机提取序列特征以预测DNA结合蛋白

获取原文

摘要

DNA-binding proteins plays important role in a variety of vital biology processes. In this study, we apply a machine learning method for classify DNA-binding proteins from non-binding proteins based on sequence information. Using an evolutionary feature and residue composition feature extracted from primary structure, we have trained a support vector machine(SVM) to distinguish DNA-binding proteins from other proteins that do not binding DNA. The prediction performances are evaluated by independent test dataset which contains 361 DNA-binding proteins and 361 non-binding proteins. Our proposed method outperforms the other existing methods in the test dataset. The results achieved by our proposed method for accuracy, 84.16%; sensitivity, 85.47%; specificity, 82.89% and Matthews correlation coefficient(MCC), 0.5828 demonstrate its good performance.
机译:DNA结合蛋白在各种重要的生物学过程中起着重要作用。在这项研究中,我们应用了一种机器学习方法,根据序列信息将非结合蛋白中的DNA结合蛋白分类。使用从一级结构中提取的进化特征和残基组成特征,我们训练了一种支持向量机(SVM),以区分DNA结合蛋白和其他不结合DNA的蛋白。通过独立的测试数据集评估预测性能,该数据集包含361个DNA结合蛋白和361个非结合蛋白。我们提出的方法优于测试数据集中的其他现有方法。通过我们提出的方法获得的结果的准确性为84.16%;灵敏度为85.47%;特异性82.89%和马修斯相关系数(MCC)0.5828证明了其良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号