首页> 外文会议>International Conference on Communications >Supervized Change Detection for SAR Imagery Based on Processing of a Low Size Training Data Set by an Ensemble of Self-Organizing Maps
【24h】

Supervized Change Detection for SAR Imagery Based on Processing of a Low Size Training Data Set by an Ensemble of Self-Organizing Maps

机译:基于自组织图集合处理小尺寸训练数据集的SAR图像超变化检测

获取原文

摘要

This paper presents a new method to improve accuracy of supervised change detection in Synthetic Aperture Radar (SAR) imagery. The model is based on the idea to apply a low size labeled dataset to the input of an Ensemble of Self-Organizing Maps (ESOM) for training data generation (TDG). The resulted synthetic data set produced by ESOM substitutes the initial authentically labeled sample set and it is used to train a supervised change detection classifier. The proposed method is evaluated using a TerraSAR-X image of 400×400 pixels acquired in the Fukushima region, Japan, before and after tsunami. As change detection classifiers we have comparatively considered Support Vector Machine (SVM), Nearest Neighbor (NN), the three-Nearest Neighbors (3-NN), and Likelihood Bayes classifier. The experimental results have confirmed the effectiveness of the proposed approach using only 100 authentic labeled pixels.
机译:本文提出了一种新的方法来提高合成孔径雷达(SAR)图像中监督变化检测的准确性。该模型基于以下思想:将小尺寸的标记数据集应用于自组织图集合(ESOM)的输入,以训练数据生成(TDG)。由ESOM生成的合成数据集将替代原始的,带有真实标签的样本集,并用于训练监督式变更检测分类器。在海啸发生之前和之后,使用在日本福岛地区获得的400×400像素的TerraSAR-X图像对提出的方法进行了评估。作为更改检测分类器,我们已比较考虑了支持向量机(SVM),最近邻(NN),最近邻(3-NN)和似然贝叶斯分类器。实验结果证实了仅使用100个真实标记像素的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号