首页> 外文会议>International Conference on Biomedical Engineering and Informatics >Recognition of microRNA-binding sites in proteins from sequences using Laplacian Support Vector Machines with a hybrid feature
【24h】

Recognition of microRNA-binding sites in proteins from sequences using Laplacian Support Vector Machines with a hybrid feature

机译:使用具有混合特征的拉普拉斯支持向量机从序列中识别蛋白质中的微小RNA结合位点

获取原文

摘要

The recognition of microRNA (miRNA)-binding residues in proteins would further enhance our understanding of how miRNAs silence their target genes and some relevant biological processes. Due to the insufficient labeled examples, traditional methods such as SVMs could not work well on such problems. Thus, we propose a semi-supervised learning method, i.e., Laplacian Support Vector Machine (LapSVM) for recognizing miRNA-binding residues in proteins from sequences by making use of both labeled and unlabeled data in this article. A hybrid feature is put forward for coding instances which incorporates evolutionary information of the amino acid sequence and mutual interaction propensities in protein-miRNA complex structures. The results indicate that the LapSVM model receives good performance with a F1 score of 22.06±0.28% and an AUC (area under the ROC curve) value of 0.760±0.043. A web server called MBindR is built and freely available at http:// cbi.njupt.edu.cn/MBindR/MBindR.htm for academic usage.
机译:蛋白质中微小RNA(miRNA)结合残基的识别将进一步增强我们对miRNA如何沉默其靶基因和某些相关生物学过程的理解。由于标记的示例不足,因此传统方法(例如SVM)无法很好地解决此类问题。因此,我们提出了一种半监督学习方法,即Laplacian支持向量机(LapSVM),通过使用本文中的标记和未标记数据来识别序列中蛋白质中的miRNA结合残基。提出了用于编码实例的杂种特征,其在蛋白质-miRNA复合物结构中结合了氨基酸序列的进化信息和相互相互作用的倾向。结果表明,LapSVM模型具有良好的性能,F1得分为22.06±0.28%,AUC(ROC曲线下的面积)值为0.760±0.043。内置了一个称为MBindR的Web服务器,可从http:// cbi.njupt.edu.cn/MBindR/MBindR.htm免费获得该服务器以用于学术用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号