首页> 外文会议>International Conference on Biomedical Engineering and Informatics >Searching for suitable classification methods in the discrimination of cold/heat herbal nature with Weka
【24h】

Searching for suitable classification methods in the discrimination of cold/heat herbal nature with Weka

机译:用Weka寻找合适的分类方法来区分冷热草药性质

获取原文

摘要

Recent years have witnessed a rapid growth of data mining approaches in studies of Traditional Chinese Medicine (TCM), especially the medical theories. Using Weka workbench, we constructed seven representative classification models to discriminate the cold/heat nature of Chinese Herbal Medicine (CHM) based on efficacy attributes and evaluated them by three kinds of validations. The results showed that naive Bayes, Bayesian network and logistic regression performed efficient discrimination on the unseen test set after a proper attribute selection, while random tree, multi-layer perceptron network, logistic regression and PART algorithm might be suitable for the retrospective analysis with all attributes. This work could provide a methodology reference for further discrimination researches and facilitate the scientific explanation of these CHM concepts.
机译:近年来,在中医(TCM)研究中,特别是在医学理论方面,数据挖掘方法迅速发展。使用Weka工作台,我们构建了七个代表性分类模型,以基于功效属性来区分中草药的冷热性质,并通过三种验证对其进行了评估。结果表明,朴素的贝叶斯,贝叶斯网络和逻辑回归在正确选择属性后对看不见的测试集进行了有效的区分,而随机树,多层感知器网络,逻辑回归和PART算法可能适用于所有情况的回顾性分析。属性。这项工作可以为进一步的歧视研究提供方法学参考,并促进对这些CHM概念的科学解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号