首页> 外文会议>International Conference on Bioinformatics and Systems Biology >Prediction of Elimination of Compounds Using Artificial Intelligence Techniques
【24h】

Prediction of Elimination of Compounds Using Artificial Intelligence Techniques

机译:使用人工智能技术预测化合物消除

获取原文

摘要

Pharmacokinetics is study of movement of drug inside the body. It includes absorption, distribution, metabolism and elimination studies of compounds/drug candidates. The current study was done to predict the elimination of compounds using artificial intelligence techniques in attempt to reduce the attrition rate of drug candidates and minimize the number of compounds failing in the drug design process due to low elimination rate from the body. A dataset of 405 compounds were used to develop prediction models using various Artificial intelligence techniques. The performance of models based by Artificial Neural Network was found to be superior in comparison to the models based on other techniques, with training set accuracy, sensitivity and specificity of 85.62%, 90.89% and 88.88% respectively. Whereas, test set accuracy of Support Vector Machine was found to be comparatively better with 86.93%.
机译:药代动力学是研究药物在体内的运动。它包括化合物/候选药物的吸收,分布,代谢和消除研究。当前的研究是为了预测使用人工智能技术消除化合物的方法,以试图降低候选药物的损耗率,并最大程度地减少由于体内清除率低而在药物设计过程中失败的化合物数量。使用各种人工智能技术,使用405种化合物的数据集来开发预测模型。发现基于人工神经网络的模型的性能优于基于其他技术的模型,训练集的准确性,敏感性和特异性分别为85.62%,90.89%和88.88%。而支持向量机的测试集准确度则相对较高,为86.93%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号